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As industries navigate an increasingly complex and data-driven 
landscape, the demand for innovative solutions that optimize 
operations and enhance decision-making has reached remarka-
ble heights. While traditional computing methods are effective, 
they often struggle to keep up with the increasing intricacies of 
modern challenges. 

Excitingly, quantum computing is on the horizon, and although 
its practical applications in industry are still developing, theoreti-
cal research indicates that we are approaching a pivotal moment 
where quantum computers will become essential and indispen-
sable tools across various domains. Quantum computing has 
the potential to revolutionize industries by solving complex pro-
blems beyond the capabilities of classical computers, enabling 
breakthroughs in various fields.

To ensure that industries are well-equipped to leverage this 
groundbreaking technology as it matures, early adoption and 
exploration of quantum solutions become increasingly relevant. 
Thus, applied quantum research is vital, connecting theoretical 
research and real-world implementation. 

In this context, the virtual organization "Fraunhofer Industrial 
Application Center Quantum Computing Hamburg (Fraun-
hofer IQHH)" was founded by the Hamburg Fraunhofer In-
stitutes (CML, IAP, IAPT and ITMP). Within IQHH, four rele-
vant industrial applications have been formalized, and suitable 
quantum algorithms have been successfully implemented and 
executed on simulators and real quantum computers.

The four use cases belong to four different business domains:

 ▪ Maritime Logistics (Chapter 4)                                            
A complex routing problem was formalized as a mathe-
matical optimization problem and solved using a quantum 
annealer.

 ▪ Catalyst Research (Chapter 5)                                         
This project explores quantum computing for simulating 
platinum catalysts by reducing problem size with active space 
methods and ZX calculus.

 ▪ Additive Manufacturing (Chapter 6)                                 
In this project, a pipeline was deployed that uses in-situ 
sensor data and a quantum-enhanced Convolutional Neural 
Network for the challenging classification task of detecting 
defects in components.

 ▪ Drug Discovery (Chapter 7)                                             
This project aims to accelerate core stages of the drug 
discovery process. A quantum annealing-based approach 
to enhance Support Vector Machines is used to tackle this 
challenge.

We invite you to delve into the following chapters, which begin 
with a brief overview of quantum computing‘s potential and 
current state. This foundation is followed by detailed discussions 
of our four use cases, highlighting the applied methods and the 
advancements made.

1  Introduction

1 Introduction



Table 1: Comparison of Noisy Intermediate Scale Quantum (NISQ) computers and perfect fault-tolerant quantum computers.
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Quantum computing (QC) has been identified by the central 
scientific organizations in Germany, Europe and worldwide 
as one of the key technologies of the future. QC will allow us 
to tackle central societal and technological challenges such as 
energy transition and sustainability, transportation and mobility 
as well as biotechnology and life sciences with completely new 
disruptive tools, methods and concepts. Accordingly, compa-
nies from all sectors of industry are looking at this topic from 
the perspective of being able to deal with complex operational 
problems, where current computing resources reach their limits. 
QC enables competitive advantages and leaps in innovation for 
companies. The time scales of QC and its applications are long-
term (10 years).

In contrast to a classical computer, a quantum computer does 
not work based on macroscopic states of electronic circuits, but 
on quantum mechanical states of suitable systems. This makes 
it possible to generate superposition states and quantum ent-
anglement during the calculation, both of which are crucial for 
information processing in quantum computers. Superposition 
states are responsible for the ability of the quantum bits (qubits) 
to take on many other states in addition to the states 0 and 1, 
which allows a high expressibility within the quantum domain. 
In addition, states can be dependent on each other (so-called 

entanglement). This allows a fast computation of highly correla-
ted states, which is computationally expensive in classical com-
putation. Therefore, quantum entanglement is the reason for 
the anticipated quantum advantage.

There are currently no quantum computers that demonstrate a 
quantum advantage for industrial applications. However, the-
re are already some important publications that demonstrate a 
fundamental quantum advantage for (a) applications that are 
neither scientific nor industrial [1, 22] and even (b) a quantum 
advantage for scientific applications [18]. This means that we are 
approaching a quantum advantage for industrial applications. 

Algorithms have been identified that cannot be solved with cur-
rent high-performance computing (HPC) systems or can only be 
solved in disproportionately long periods of time, which are poly-
nomially or even exponentially accelerated with QC, e.g. by Shor 
[19], Grover [9], Harrow, Haddifim & Lloyd [10] , Babai, Beals & 
Seress [2] and Bennet, Bernstein, Brassad & Vazirani [3]. Not all 
these algorithms can currently be successfully implemented due 
to the limits of today’s QC hardware. While these algorithms 
refer to perfect, fault-tolerant quantum computers, we are cur-
rently in the Noisy Intermediate Scale Quantum (NISQ) era. This 
means that today‘s available QC hardware is characterized by a 

 NISQ Perfect fault-tolerant Quantum Computers 

Number of physical qubits Several hundred Millions 

Error Correction No error correction, however a mitigation 
of errors 

Automatic error correction 

Algorithms Hybrid algorithms which are optimized 
iteratively 

Direct algorithms 

Readout of the results Many measurements to determine results 
statistically 

Results can be readout binary 

Length of the quantum 
circuits 

Short (hundreds to thousands of 
quantum gates) 

Long (billions of quantum gates) 

Quantum advantage Not yet mathematical proven Proven mathematically for certain problems 

Availability First prototypes exist End of decade at the earliest 

2  Quantum Computing: 
  Introduction and Potential

2 Quantum Computing: Introduction and Potential
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limited number of qubits (~less than 1000) and no or only minor 
error correction. We are approaching fault-tolerance fast and 
there are first demonstrations of error correction in real devices 
[4]. These showcase only a small number of logical qubits which 
possess smaller but still existing errors. Thus, these advances are 
not yet allowing to run algorithms for fault-tolerant QCs. Some 
of the differences between the NISQ and fault-tolerant quantum 
computers are listed in Table 1. As a result, hybrid algorithms 
(QC and classical) need to be used to limit the processing on a 
quantum computer and not accumulate too many errors. On a 
gate-based quantum computer, this means that the length of a 
quantum circuit is limited. 

The first NISQ quantum computers are in operation and com-
mercially available for industrial users. While we are probably a 
decade away from the advent of perfect fault-tolerant quantum 
computers, there are few real backends that can already use 
error correction albeit on a small number of qubits. It is widely 
accepted that a quantum computer with several hundred error 
corrected qubits will reach quantum advantage for industrial ap-
plications.

2 Quantum Computing: Introduction and Potential



Figure 3: Example of scaling behaviours of classical and quantum 

algorithms and corresponding break-even points after which a 

quantum advantage can be reached.

Figure 2: Principle of the VQE algorithm.
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In the domain of quantum computing, two architectures stand 
out: gate-based and annealing. Gate-based quantum compu-
ters manipulate qubits with the help of quantum gates. This 
offers flexibility in algorithm design and means that all calcula-
tions that can be done on classical systems are also possible on 
gate-based quantum computers, albeit not necessarily with an 
acceleration. Quantum annealers (QA) solve mathematical prob-
lems that can be formulated as a quadratic unconstrained binary 
optimization (QUBO) problem. The minimum of such a function 
can be found with the help of annealing using quantum me-
chanical effects such as tunneling. While gate-based quantum 
computers can solve any problem that can be solved on classical 
computers and therefore pose a bigger potential than quantum 
annealers, they are not yet as mature. I.e. for now, they can 
solve smaller problems with a longer time-to-solution compared 
to quantum annealers. In this white paper we demonstrate al-
gorithms for both types of machines.

Current quantum computers are prone to considerable error ra-
tes and limited in size by the number of qubits in the system. This 
is called NISQ era. In the NISQ era, the computer architectures 
QA and gate-based universal computers are used. While QUBOs 
can be solved natively on a quantum annealer; robust, iterative 
algorithms based on the variation principle are used on the ga-
te-based computers. These solve the computationally intensive 

part on the quantum computer and rely on classical resources 
to provide guidance towards the optimum. An example of such 
algorithm, the variational quantum Eigensolver (VQE) is parti-
cularly suitable for determining the energy states of molecules 
on a gate based quantum machine. It’s functionality principle is 
outlined in Figure 2. Generally, in this document algorithms for 
the NISQ era are examined. 

Algorithms for fault-tolerant QCs are completely different in na-
ture. These include algorithms for search problems, quantum 
Fourier transforms, the solution of linear systems of equations as 
well as the prime factor search. Compared to the NISQ era, this 
opens up new accelerated applications such as computational 
fluid dynamics, algorithms for image processing and the break-
ing of RSA encryptions. A quantum advantage is expected, once 
hardware exist that  enables larger simulations. As depicted in 
Figure 3, for a potential algorithm with exponential scaling, a 
quantum scaling advantage will be only visible for larger prob-

lem sizes.
In this white paper, we look at different application areas (from 
additive manufacturing, drug discovery, chemistry and maritime 

3  Quantum Computing: 
  State of the Art 
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Figure 4: Overview of classical and quantum hardware.
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logistics) and adapt algorithms to consider the specifics of these 
applications and improve their scalability even on current sys-
tems to be prepared for quantum advantage. The applications 
can be methodically traced back to three domains: 

 ▪ Optimization deals with finding optimal solutions for 
problems in logistics, production planning, financial markets, 
etc.. In this white paper we present the maritime inventory 
routing problem, a problem for maritime logistics. Such 
problems can quickly get computationally intractable and 
classical methods often employ heuristics. The corresponding 
potential of quantum algorithms is that the solution of large 
optimization problems can be accelerated in the future. 

 ▪ Quantum Chemistry simulates the behavior and reactions 
of molecules. Exact classical methods are limited to small 
molecules. In most cases an approximation (such as Density 
Functional Theory) is being used quite successfully. However, 
such approximations do not hold if molecules are highly cor-
related, i.e. when the atoms in the molecule influence each 
others behavior. Here the feature of entanglement makes 
quantum computers the ideal platform to simulate quantum 
mechanical systems such as molecules and can moreover 
be a game changer for the chemical and pharmaceutical 
industry, once larger quantum computers become available 
on the market. 

 ▪ Quantum Machine Learning is a field that is currently quite 
unexplored. There is a plethora of methods already available 
classically. Many of them lack a reasonable explainability 
of the results (e.g. in the case of Deep Learning). Quantum 
Machine Learning builds on these approaches. In particular, 
it is possible to adapt computationally elaborate parts of the 
classical methods to the quantum world. In the scope of 
this white paper two methods are presented: A Quantum 
Support Vector Machine for drug discovery and Quantum 
Kernels for Convolutional Neural Networks to detect defects 
in additive manufacturing. 

Thus, all areas in which quantum computing is currently expec-
ted to have an advantage for in the NISQ era are being investiga-
ted. Even though quantum computers are still limited in the size 
of the computational problems they can solve and fundamental 
research is still being carried out, developments are progressing 
rapidly. This white paper is therefore a call to get to grips with 
the topic today.

3 Quantum Computing: State of the Art 
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Figure 5: Sketch of the maritime inventory routing problem with different pick-up and drop-off points and several ships that 

can transport between these points.
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4.1 Problem Definition  

As shipping volumes grow with the economy, it becomes increa-
singly important to find better shipping routes and schedules, 
because even marginally more efficient operation can save large 
amounts of resources.   In addition, further requirements on ef-
ficiency are posed by the tightening environmental regulations. 
Formalizing logistic operations as mathematical optimization 
problems and using their solution as guidance in action not only 
tackles the above-mentioned challenges of the required increa-
se in efficiency but also automatizes the planning process. This 
opens the door for repeated short-notice planning with possible 
adaptations. Quite often, however, the time it takes to find op-
timal solutions using classical methods scales unfavorably with 
the problem size. One alternative is to employ so-called “heuris-
tics” to look for good (but possibly not optimal) solutions in less 
time. Next to existing classical approaches, quantum algorithms 
have great potential in that regard and are expected to outper-
form their classical counterparts in the future. As an example of 
a maritime optimization problem, we here consider the Mariti-
me Inventory Routing Problem (MIRP), which aims to optimize 
the sea trade of bulk products. It is relevant for shipping compa-
nies which are not only responsible for organizing the shipping 
routes and schedules of a fleet of vessels, but also for the inven-
tory management at the storage facilities visited along the rou-
tes. This interplay between routing and inventory optimization 
makes it especially challenging to solve, even for small instances 
with only few vessels, ports and products. In the following we 

outline the Maritime Inventory Routing Problem (MIRP) setting 
but restricted to one type of product. A given amount of vessels 
is able to travel between a given set of ports to load and unload 
cargo (see Figure 5). Both the vessels and ports have limited ca-
pacities for storage. In order to simulate supply and demand, it 
is assumed that at some ports the product is produced (pick-up 
points) while at others it is consumed (drop-off points), i.e. the 
inventory levels either steadily rise or decline. To ensure that the 
ports do not run full or empty, the fleet of vessels must hand-
le the distribution of the product accordingly. In particular, the 
aim/objective is to maximize the total revenue generated by the 
trade, under consideration of the aforementioned factors. This 
is done by balancing the earnings from product sales with travel 
and berthing costs. 

A solution to the problem is specified and can vary based on 
the vessel routes, berth occupation, inventory levels, production 
and consumption rates of the product, and turnover volumes of 
cargo. Next to variable-defining constraints, which we do not 
specifically mention here, the following problem-specific cons-
traints apply:

 ▪ Port and vessel inventories are bounded by their capacities
 ▪ Berth places are limited
 ▪ Port production and consumption rates are bounded
 ▪ Loading rates are bounded   
 ▪ Vessels enter the system at a specified time-period and 

location

4  Maritime Inventory Routing    
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Figure 6: Specified parameters of MIRP benchmark instances.

Figure 7: Number of variables in the MILP model vs. the MIQP 

model of the benchmark instances from Figure 6.
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4.2 Solution approach  

In order to solve an optimization problem algorithmically (on 
classical or quantum hardware), it must first be modeled math-
ematically. As with many other optimization problems, it is 
common to model the MIRP as a Mixed Integer Linear Program 
(MILP)[8]. Thus, linear expressions for the objective function (the 
revenue, to be maximized) and the constraints must be found, 
all in terms of discrete and continuous variables. Larger problem 
instances, i.e. with more ports, vessels and/or a larger time scale 
(periods), typically result in larger models with more variables, 
which are harder to solve algorithmically. Below in Figure 6 we 
present some instances chosen for a benchmark comparing clas-
sical and hybrid (quantum-classical) solution methods.

For the classical side of the benchmark, we ran the model on 
the generic state-of-the-art MILP solver CPLEX, which can either 
return exact optimal solutions after a possibly long time span, or, 
as a heuristic, the best solution found within a given shorter time 
span. The underlying solution method is based on the so-called 
branch-and-cut algorithm, together with the simplex algorithm 
for continuous problems [7]. We employed both the exact solver 
and the time-based heuristic, for the following reasons. While 
the latter is more common state of the art, as it can give near 
optimal solutions in little computation time, we still wanted to 
know how close to optimality those solutions can get. Thus, we 
had to restrict to relatively small problem sizes which can be 
solved exactly in a reasonable amount of time. The other side of 
the benchmark, a hybrid algorithm, is a time-based heuristic as 
well, hence by also limiting the computation time of CPLEX, we 
allow for a fair benchmark. 

The requirement to keep track of the inventory levels makes 
the MIRP difficult to embed on quantum computers, as these 
in their current state do not excel at representing real variables. 
Rather it may be favorable to split Mixed Integer Problems into 
discrete and continuous parts and run the prior with quantum 
algorithms while reverting to classical methods for the latter. 
This is common practice with hybrid algorithms. We used the 
“Leap Hybrid Solver” by D-Wave for the benchmark, which is a 
combination of a quantum annealer and high-performance clas-
sical resources. As a downside being one of the largest-capacity 
hybrid solvers currently existing, the description of the algorithm 
running on it is not public. Hence, we can benchmark its per-
formance but not analyze its inner workings . As with quantum 
annealers, the solver is probabilistic and returns a large sample 
of solutions varying in quality. We compared the best one to the 
classical solution.

It is possible to submit the MILP model of the MIRP to the D-Wa-
ve hybrid solver and run it, but there is no guarantee to receive 
the optimal solution. However, the hybrid solver can actually 
handle more general problem types as well, while CPLEX is op-
timized for and somewhat restricted to linear models. To fully 
utilize D-Wave‘s capacities, the MILP model of the MIRP was 
modified to a Mixed Integer Quadratic Program (MIQP) by emp-
loying quadratic terms in the objective. The main benefit is that 
the MIQP formulation requires fewer variables than the MILP 
formulation because it encodes the solution more efficiently. As 
a comparison of the models, Figure 7 presents the numbers of 
variables of the instances of Figure 6 formulated linearly as MILP 
and quadratically as MIQP. The grey diagonal represents equal 
number of variables. Notice that the instances starting with ‘A’ 
and ‘B’ are aligned with their peers. This is because the scaling 
advantage of the MIQP in the number of variables roughly de-
pends on and increases with the number of ports, which does 
not vary within these groups.

4 Maritime Inventory Routing



Figure 8: Benchmark results of the D-Wave hybrid solver vs. 

CPLEX on benchmark instances A. Higher values mean better 

solutions.

Figure 9: Benchmark results of the D-Wave hybrid solver vs. 

CPLEX on benchmark instances B. Higher values mean better 

solutions.
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4.3 Results 
 
For the benchmark, we computed solutions of the MIRP pro-
blem instances from Figure 6 in three different ways. Running 
CPLEX on an ordinary laptop, the problem instances were solved 
to optimality, yielding the optimal objective values and the cor-
responding computation times. Then, both on the same device 
(as a MILP) and the D-Wave hybrid solver (as a MIQP), we sear-
ched for the best solutions within a computation time limit of 5, 
10 and 20 seconds. For smaller problem instances, CPLEX alrea-
dy found the optimal solution during those time spans, while for 
larger instances, it only found near optimal solutions. The results 
are visualized in Figure 8 and Figure 9 below.

In those plots the achieved objective function values on the ver-
tical axis with respect to the calculation time on the horizontal 
axis for both CPLEX on the linear formulations (red) and D-Wave 
on the quadratic formulations (blue) of the MIRP instances (see 

Figure 6) are displayed. The optimal objective function values are 
represented by the dashed lines. Thus, the closer a value is to the 
dashed line, the better. Remember that in context of the consi-
dered logistical problem, the objective function corresponds to 
the revenue generated by operational decisions encoded in a 
solution.

While the heuristic solutions of the classical solver did outper-
form the respective solutions of the hybrid solver, it is import-
ant to note  that the latter does not perform badly at all as its 
reaching 96.5% of the optimal objective on average. At worst, 
the D-Wave objective reaches 90% of the optimal objective and 
92% of the respective CPLEX objective for the same computa-
tion time. Hence, the outcome of the benchmark suggests that 
while we did not achieve a computational advantage with the 
tested hybrid solution method, its results are not far from the 
state of the art.    

The current weakness of the hybrid solver lies in the regime of 
large instances, where the number of variables exceeds the ca-
pacity on the D-Wave quantum annealer. However, with future 
improvements in connectivity, error resilience and qubit count, 
it may be able to match or even surpass the generic linear solver 
in that regime.
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Figure 10: Energy profile of an uncatalysed (blue) and a cataly-

sed (red) reaction. The catalysed reaction is much more energy 

efficient.
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5.1 Problem definition

The chemical industry relies on high-performance catalysts 
across numerous processes. These catalysts not only save energy 
by allowing reactions to run at lower temperatures and lower 
pressure but also enable a faster conversion of educts to pro-
ducts, as depicted in Figure 10. The use of catalysts therefore 
also plays an important role when it comes to sustainability. In 
addition, catalysts enable a wide range of innovations and secu-
re the supply of many basic materials that are used in products 
in our daily lives. The development of new, improved catalysts 
is important for the chemical industry. Of special interest, of 
course, is the enhancement of catalysts which consists of rare 
and expensive precious metals like platinum and iridium. These 
are needed for applications in the new hydrogen economy.

Until now, the task of engineering new and more active catalysts 
has relied on experience, knowledge and a lot of testing. This 
development process takes a long time, is very cost-intensive 
and possibly the best solution will be overlooked. 

To enhance the performance of a catalyst, the adsorption and 
desorption energies of the involved chemical species on the sur-
face of the catalytic material have to be optimized to reduce the 
so-called activation energy as much as possible.

A typical material used in catalysis is platinum. As a noble metal, 
it has outstanding catalytical properties but at the same time is 
rather expensive and considered a scarce resource or so-called 
critical material. It is therefore of great benefit to select the most 
energetically favorable particle shape for the respective reaction.

The underlying mathematical calculations are highly complex 
and time-consuming. This is where classical computer-based 
methods often reach their limits and quantum computing can 
potentially provide a remedy without losing the precision of the 
calculations or increasing the computing time immeasurably. 
Based on the results of the theoretical calculations, the catalysts 
can be specifically produced in the laboratory and tested with 
partners and customers. In this way, lengthy “trial and error” 
test series can be avoided or at least significantly shortened.

A typical approach is to synthesize a specific catalyst in the lab, 
characterizing it using different analytical methods and then tes-
ting it. For highly specific reactions needing multielement cata-
lysts, this can take days until a comprehensive assessment of its 
performance has been executed. If the performance is lacking, 
the whole cycle starts anew.

5.2 Solution approach

Strongly correlated systems, such as transition metal com-
pounds, which are used as catalysts in nature and in industry, 
are difficult to simulate on classical computers and it is hoped 
that the use of quantum computers will offer initial advantages. 
The variational algorithm VQE (Variational Quantum Eigensol-
ver) is used, which outsources the computationally intensive part 
of the calculation to the quantum computer and approximates 
the result iteratively on a classical computer.

The ab initio electronic structure problem in quantum chemistry 
is concerned with the determination of the eigenstates of the 
Hamiltonian of an atom or a molecule for a given set of nuclei 
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Figure 11: Schematic of combining chemical expertise and quantum computing in order to harness the mulitude of possible routes 

for optimization in material development.
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positions. VQE starts from an Ansatz comprised of some educa-
ted guess for an initial state and a unitary circuit defined by a set 
of classical variational parameters. 

The ground state energy is estimated by applying this circuit to 
the initial state, with this output the variational parameters are 
optimized to lower the energy of the Ansatz state, and the pro-
cedure is repeated until reaching the desired convergence. The 
qubit representation of the Hamiltonian and the states is the 
first step in a VQE simulation. Starting from the discretized elec-
tronic Hamiltonian, the quantum simulation algorithm requires 
the encoding of the fermionic degrees of freedom into qubits. 

There are different classes of variational quantum Ansatz, mainly 
distinguished by the circuit complexity and the problem to be 
solved. Thus, e.g., the unitary variant of coupled cluster theory 
is an Ansatz very well suited to quantum chemistry applications. 
Once the expectation values of the Hamiltonian are estimated 
by the actual quantum hardware for a given set of parameters 
this information is fed into the classical optimizer.

Due to the exponential complexity of the Hilbert space of elec-
trons, the configuration space of molecules, a quantum chemis-
try simulation for classical computers scales at least polynomially 
for approximate solutions. On quantum computers it is already 
possible to outperform algorithms from classical computers with 
a three-digit number of qubits in case that they work perfectly.

At present, only small chemical systems can be simulated exactly 
on classical computers. Molecules such as platinum, which - as 
described above - are important catalysts, cannot yet be calcula-
ted on quantum computers due to the size and errors of current 
quantum computers. Therefore, we have applied some techni-
ques to reduce the quantum circuits and the number of qubits 
necessary to simulate large molecules
 
We have been limiting the active space of the molecule that 
will be simulated. The active space is a type of classification of 

molecular orbitals. Spatial orbitals are classified as belonging to 
three classes:

 ▪ core, always hold two electrons
 ▪ active, partially occupied orbitals
 ▪ virtual, always hold zero electrons

Based on the freedom left for the occupation in the active or-
bitals, a certain number of electrons are allowed to populate 
all the active orbitals in appropriate combinations. The active 
classification can theoretically be extended to all the molecular 
orbitals, to obtain a full configuration interaction treatment. In 
practice, this choice is limited, due to the high computational 
cost needed to optimize a large complete active wavefunction 
on medium and large molecular systems. 

A clever choice of an active space will allow NISQ quantum com-
puters to simulate large molecules such as platinum. However, 
the choice of a sufficiently large active space is an art. In the 
scope of this white paper, we show how the quantum compu-
ting resources needed to simulate the possible active space con-
figuration scale and showcase a possible method to reduce the 
quantum computing resources during compilation, i.e. mapping 
of gates to the quantum computer.

5.3 Results

For this study we are using the crenbl basis set which is based 
on [17] for the geometry of the dataset, the Bravyi Kitaev Map-
per which maps fermions to qubits in a resource efficient way 
and the Unitary Coupled-Cluster Single and Double excitations 
variational form (UCCSD) which is a quantum variant of the gold 
standard in classical quantum chemistry, CCSD. The resulting 
quantum circuit generated with qiskit is imported in the pyzx 
package [11] and optimized by converting the circuit into a ZX 
diagram, simplifying the diagram and then converting it back 
into a circuit. ZX diagrams can be seen as a generalization of 
quantum circuit notation. For a given active space choice several 
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Figure 12: QC resources needed for different sizes of active 

spaces.

Figure 13: Quantum circuit characteristics of different optimiza-

tion methods for an active space of 3 orbitals (qiskit framework 

and additional optimizations available in pyzx).
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optimization methods have been compared. First, the quantum 
circuit has been generated using the qiskit framework, different 
optimization levels in the qiskit framework have been used, then 
additional methods available in pyzx have been applied to the 
circuit. As depicted in Figure 13 the basic optimization method 
of pyzx delivers the best results in terms of number of single 
gates and multiqubit gates, i.e. gates that encompass more than 
one qubit. This optimization method has been used in the rest 
of the study as it seems to be optimal for the use case. Figure 12 
shows the optimized results for the number of gates, the num-
ber of multi-gates which involve more than one qubit and the 

number of qubits depending on the number of active orbitals. 
While the number of qubits grows linearly with the number of 
active orbitals, the number of gates grows very quickly and rea-
ches numbers that are not achievable with current QC devices 
for a low number of active orbitals. This is not yet considering 
topologies of real quantum devices which might increase the 
gate count even more. 

This study optimizes some of the parameters available in the 
quantum computing algorithm and gives a hint on the resources 
needed to simulate a platinum atom. Thus, the catalyst use case 
is not yet feasible on real quantum computers, however quan-
tum chemistry on quantum computers is an active field of re-
search where a lot of developments are expected in the coming 
years.
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Figure 14 shows a schematic representation of the Laser Powder 

Bed Fusion (LPBF) process.

Figure 15 shows a transparent LPBF Part with visible pores in red.
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6.1 Problem definition

Laser Powder Bed Fusion (LPBF) is an advanced and widely utili-
zed additive manufacturing (AM) process, particularly valued for 
its ability to produce geometrically complex metal components 
for industries such as aerospace, automotive, medical implants 
and tooling. This process functions by selectively melting thin 
layers of metal powder using a high-energy laser (Figure 14).

Next to its high material-efficiency, a key advantage of LPBF is 
given by its ability to allow the fabrication of parts with com-
plex designs that would be difficult, if not impossible, to achieve 
using conventional manufacturing methods. In addition, LPBF is 
able to produce highly customized parts directly from CAD mo-
dels, eliminating the need for specialized tooling, significantly 
reducing lead times and enabling rapid prototyping and iterati-
ve design improvements. In the aerospace sector, for example, 
LPBF is particularly beneficial due to its capacity to produce light-
weight, high-strength components with complex geometries. 
Parts with intricate internal cooling channels or weight-optimi-
zed structures contribute to enhanced fuel efficiency, reduced 
emissions, and overall improvements in aircraft performance. In 
the medical industry, LPBF is invaluable for the production of 
patient-specific implants, prosthetics, and surgical instruments. 

For instance, LPBF-implants benefit from highly customized 
components tailored to an individual‘s anatomical features and 
in addition mimic the natural bone architecture, which helps the 
bone and implant fuse together for long-term stability. 

One of the major challenges in LPBF is the formation of defects 
in the form of too large pores within the manufactured com-
ponents (Figure 15). The presence of these pores can compro-
mise the structural integrity of the part, potentially leading to 
premature failure. Pores arise from mechanisms such as Lack of 
Fusion (insufficient energy to melt powder), Gas Porosity (trap-
ped gas during processing), and Keyhole Pores (localized vapo-
rization due to excessive laser power). Detecting defects before 
deploying parts in critical applications is essential for ensuring 
component reliability and safety. Various approaches are utilized 
for quality assurance in LPBF, where one distinguishes between 
destructive testing (DT) and nondestructive testing (NDT).

Although DT-methods provide the most detailed information ab-
out internal defects, they render the tested part unusable. Wit-
ness specimens are an alternative but consume extra material 
and time without directly assessing final part quality. In contrast, 
NDT techniques, such as micro-computed tomography (micro-
CT), provide highly detailed insights into the internal structure 
and potential defects within the part without causing damage. 
However, the high cost and slow speed often limit their practi-
cality for routine quality inspections in high-volume production 
environments. Developing faster and more cost-effective NDT 
solutions is crucial for maintaining consistent part quality in in-
dustrial applications.
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Figure 16 shows a simplified version of the quanvolution layer with a 2D input having 3 features., e.g. image with r, g, b values. 

The convolution used in this study builds up on a 3D input with more complex features.
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6.2 Solution approach

To predict pore formation during the LPBF  process, we have 
developed an innovative methodology that uses in-situ sensor 
data to train a convolutional neural network (CNN). The objec-
tive of this research is to investigate the potential of gate-based 
quantum computing in the form of hybrid quantum-classical 
convolutional neural networks (QCCNN), addressing this speci-
fic use case.

An advanced sensor system was integrated to monitor the melt 
pool during the LPBF process, enabling real-time observation 
through the laser beam. This system is designed to capture 
emissions across three distinct wavelengths, each offering criti-
cal data related to the melt pool‘s characteristics. As a result, the 
sensor system generates a three-dimensional dataset through-
out the build process, providing detailed information on the 
entire part. The printed components were scanned using mi-
cro-CT to acquire high-resolution three-dimensional images of 
their internal structures, which allowed for the precise detection 
of pores within the components. By identifying and quantifying 
these internal features, the micro-CT images provided essential 
ground truth information for the classification task.

The sensor data and micro-CT scans were carefully aligned and 
processed through a comprehensive pipeline to ensure their 
appropriateness for model training, utilizing processed sensor 
data organized within specific samples. Using the pore locations 
identified in the micro-CT scans, the sensor data were labeled 
into two distinct classes: sensor data corresponding to regions 
containing detectable pores and sensor data representing de-
fect-free material. Moreover, the dataset incorporates a voxeli-
zation technique that transforms the traditional X, Y, Z coordi-
nate system of the sensor values. This transformation is crucial 
for aligning the data with the input requirements of the CNN 
resp. QCCNN.

CNNs are a widely used type of feed-forward neural network 
and especially known for their exceptional performance in clas-
sification tasks on image and audio data. In a CNN, the con-

volutional kernel, which functions as a small filter, is systema-
tically applied to an input image or feature map to generate 
the output. This results in a feature map that highlights the 
detected patterns within the data. In the development of the 
hybrid QCCNN, a CNN architecture serves as the foundation, 
but a classical convolutional kernel is replaced by a quantum 
convolutional (quanvolutional) kernel. 

In this study, rather than utilizing the conventional kernel com-
putation, we flatten the segments of the kernel and employ 
them as input to a quantum circuit. The output generated by 
this circuit is utilized as the new feature representation, allowing 
for enhanced information extraction and potentially improving 
the performance of the CNN in classification tasks (Figure 16).

Inspired by preliminary studies on QCCNNs by Matic et al. [13] 
the quantum circuits were constructed as follows: An initial layer 
of single qubit rotations (RY gates), encoding the input data, is 
followed by a deeper layer of random gates, which entangles 
the qubits. The layer of random gates includes further single-qu-
bit rotations, and more importantly some number of two-qubit 
gates (CNOT gates) to employ entanglement across multiple qu-
bits. Different implementations of the random layer, varying the 
number of rotational gates and CNOT gates, were tested and 
the quantum circuits were executed on classical hardware with 
the PennyLane simulator analytically calculating the expectation 
values. As a non-linear function the quantum circuit potentially 
detects hidden structures in the data and could be a useful ad-
dition to a classical CNN architecture. Furthermore, the compa-
ratively small number of qubits required makes this approach 
generally interesting for the NISQ era.

The initial layer of the CNN will be replaced with the quanvolu-
tional layer. Instead of executing multiple computations for each 
sample over multiple epochs using the quanvolutional layer, we 
have integrated the quanvolutional layer as a preprocessing step 
applied to the data prior to feeding it into the CNN. This ap-
proach aims to streamline the computational process by trans-
forming the input data with quantum-enhanced features before 
subsequent analysis. By leveraging both quantum computing 
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Figure 17 shows the kappa value of the different models on the 

validation/test data (higher kappa values meaning better model 

performance). The results are averaged over 20 runs, varying the 

training and validation splits to assess consistency across diffe-

rent data configurations. The standard deviations are represen-

ted by the shaded bands.
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capabilities and traditional CNN architectures, this method seeks 
to harness the strengths of both technologies to achieve supe-
rior performance in feature extraction and classification tasks.

6.3 Results

To draw a meaningful conclusion, a comparative analysis bet-
ween an ordinary pure-classical CNN, a pure-classical CNN with 
a classical preprocessing layer (CNNP) and the hybrid (quantum-
enhanced) QCCNN was conducted. Given that the preproces-
sing step used in the QCCNN is not typically implemented in 
classical CNN architectures, we designed the CNNP to match 
the configuration and structure of the QCCNN as closely as pos-
sible by using an initial convolutional layer with non-trainable 
parameters, followed by the same (classical) convolutional layers 
which are used in the QCCNN.  

Several metrics (accuracy, precision, F1 score, loss-function and 
Cohen‘s kappa) were calculated and considered for the evalua-
tion of the models’ performances, both on the training data and 
on the validation data. The kappa value, due to its holistic defi-
nition and the fact that it respects the possibility of coinciden-
tal matches between ground truth values and predictions, was 
chosen as the key evaluation metric. The experimental results 
show strong performance across all models with a kappa value 
of more than 0.75 on the validation data already after a few 
epochs (Figure 17).  The measured accuracies and precision were 
also very high, reaching 90% on the validation data and up to 
95% on the training data. In all metrics, no significant differen-
ces between the performance of the QCCNN approach and the 
classical CNNs on the validation data were observed. 

Based on the results obtained, we can draw two conclusions: 
Firstly, the findings indicate that our groundwork in preparing 
the data and establishing a robust pipeline – from the initial raw 
laser data to accurate pore prediction in components produced 
via the LPBF process utilizing CNNs – has proven to be effective. 
Secondly, the results show that, although no significant advan-
tage was identified, we have successfully integrated quantum 
kernels into the classical CNN framework, resulting in a QCCNN 
that can be effectively utilized for pore detection. These findings 
motivate further exploration and continued research into their 
performance, and applicability to other complex problems. Fu-
ture work could focus on incorporating a quanvolutional layer 
or a quantum fully connected layer as a trainable component 
of a QCCNN, while also investigating alternative data encoding 
techniques and optimizing quantum circuit hyperparameters 
(e.g. number of CNOT gates), through grid or Bayesian search 
methods. Furthermore, the potential of quantum algorithms for 
new hybrid deep learning architectures and the impact of utili-
zing real quantum hardware on the model’s performance should 
be investigated.

Looking to the future, we are excited about the growing op-
portunities to solve real-world use cases with (hybrid) machine 
learning algorithms using quantum computing, building on our 
achievements to date.
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Figure 18: This case study explores the application of quantum computing-based Support Vector Machines to in silico screening, 

aiming to accelerate core stages of the drug discovery process.
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7.1 Problem definition
 
The cost of developing a novel pharmaceutical drug has soared 
from millions to billions of Euros since the 1950s. While clini-
cal studies of efficacy and safety in human patients constitute 
the most protracted and expensive phase of the process, prec-
linical drug discovery and development typically account for 30 
to 40% of the total cost. The high attrition rate at every step 
from hit identification and lead optimization to the selection of 
clinical candidates requires the screening of large numbers of 
molecules in the early stages of the drug development process.

Highly automated sample preparation and analysis techniques 
for experimental studies of molecules (in-vitro screening) have 
been established over the past decades. These have been com-
plemented by approaches to computer-aided drug discovery 
(in-silico screening) which aim to predict molecular properties 
such as its efficacy on a target, transport and metabolism in the 
body, and toxicity and safety profile. In-silico screening enables 
the assessment of much larger substance libraries, which cover 
a more diverse chemical space, and hence the discovery of more 
effective, accessible and safer drugs. 

However, in-silico screening is computationally expensive: Large 
libraries of substances must be screened and complex molecular 
properties modelled and predicted for each substance. Quan-
tum computing promises a significant acceleration by exploring 
a large solution space in parallel.

The study presented herein aims to assess the potential of to-
day’s quantum computing platforms to solve practical problems 
in in-silico drug discovery. Using three representative examples, 
we apply quantum-based classification algorithms to predict the 
following molecular properties:

 ▪ Blood-brain barrier penetration ability                             
(Martins 2012 [12], 2030 compounds),

 ▪ P-Glycoprotein inhibition efficacy                                    
(Broccatelli 2011 [5], 1218 compounds),

 ▪ Aqueous solubility                                                             
(Sun 2019 [20], 2456 compounds).

We aim to illustrate the capabilities of today’s quantum compu-
ters and the limitations they may impose on problem scale and 
result quality. 
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Figure 19: Data flow for the slice-wise training and test of 

Support Vector Machines.
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7.2 Solution approach
 
Public Datasets

We selected three publicly available datasets for this study. The 
Polaris Hub [15] offers open access to biochemical datasets for 
use in machine learning benchmark studies. By using these data, 
we enable future performance comparisons with work from 
other research groups. The molecular structure of compounds 
in each dataset is described via SMILES strings. Morgan finger-
prints [14] with 1024 bits were generated from the SMILES 
strings using the RDKit cheminformatics Python library (RDKit) 
and were used as the feature space in predicting the molecular 
properties. Datasets were divided into 50%  training data and 
50% test data in our machine learning study.

Quantum Annealing Platform

As discussed in Chapter 3, gate-based quantum computers and 
quantum annealers are the two fundamental architectures avai-
lable. Gate-based designs offer flexibility in algorithm design, 
but current implementations are limited to tens to hundreds of 
qubits, which imposes tight limits on the tractable problem size. 
In contrast, quantum annealers can solve mathematical prob-
lems that can be formulated as a quadratic unconstrained bi-
nary optimization (QUBO) problem. But with up to 5000 qubits   
they can handle significantly larger problems. Since our focus in 
this study is on achieving results at a practical scale with today’s 
quantum computers, we selected the commercially available D-
Wave quantum annealer platform. The Advantage system with 
5000 qubits was used via D-Wave’s Leap cloud access.

Support Vector Machines

Support Vector Machines (SVMs) are a well-studied supervised 
machine learning model, developed in the 1990s by Cortes and 
Vapnik [6] . While SVMs are essentially linear classifiers, they can 
also perform non-linear classification by representing a set of 
high-dimensional data points through pairwise similarity measu-
res, calculated using a kernel.

SVMs are well-suited for quantum computers with limited pro-
blem sizes, and particularly for implementation on quantum an-
nealers: After training an SVM model on a manageable subset of 
molecules with known properties, it can be repeatedly applied 
to predict the properties of a large number of test molecules. 
Using a kernel enables non-linear classification while also sig-
nificantly reducing problem dimensionality by converting high-
dimensional data into scalar similarity measures. Furthermore, 
SVM training can be formulated as a QUBO problem, making it 
compatible with quantum annealers. A quantum annealer-ba-
sed formulation of SVMs has been provided by Willsch et al. 
[21].

SVM implementations on classical computers are readily availa-
ble, well-understood and provide robust and reproducible clas-
sification. They can hence serve as a benchmark for assessing 
quantum SVM performance in our study. Even with the relative-
ly large capacity of the D-Wave Advantage quantum annealer, 
quantum SVMs cannot be trained with complete training data. 
A slice-based approach as outlined in Figure 19 was used. To iso-
late a potential performance impact of this size limitation in the 
comparison of quantum vs. classical SVMs, the effect of limited 
slice sizes on training performance was assessed for the classical 
SVM as well.

7.3 Results

Size constraints and discretisation

Figure 20 shows how the classification performance of a classi-
cal SVM for our three datasets is impacted by the size of training 
data slices. Cohen’s Kappa was used to quantify the agreement 
of classification results with known ground-truth properties of 
the test data. Classification accuracy generally deteriorates with 
smaller slice sizes, but the effect varies across the datasets. 

Further analysis suggests that datasets where the molecular fin-
gerprints show a pronounced bimodal distribution can be trained 
reliably even with small slice sizes – exemplified by Broccatelli’s 
data for P-Glycoprotein inhibition. In contrast, Sun’s solubility 
data, with a continuous distribution of molecular fingerprints 
in the parameter space, benefit from training the SVM with the 
largest possible slice sizes. Hence, whether quantum SVMs with 
their technical size limitation are suitable will be impacted by 
the data properties. The limited number of physical qubits fur-
ther means that problem coefficients can be represented by a 
few bits only. Depending on the slice size, our implementation 
allows for only 1 to 4 bits to represent coefficients. To represent 
a larger dynamic range, a numeric base B=10 was evaluated in 
addition to the obvious choice of B=2. 
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Figure 20: Classical and quantum SVM performance as a function 

of training slice size. These results are averaged over 18 different 

training and test sets. The standard deviations are represented 

by the shaded bands for the classical results and the small hori-

zontal markers for the quantum results.
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Choosing the optimal values for the numeric base and number 
of bits becomes part of the required hyperparameter optimi-
zation for the quantum SVM. Consequently, establishing opti-
mal hyperparameters requires a search in a higher-dimensional 
parameter space than for the classical SVM. This introduces an 
additional computational overhead for the quantum approach.

We found that Bayesian search offers a computationally more 
efficient alternative to grid search and produces equally valid 
results. It was employed for both approaches with the number 
of iterations adapted to the respective parameter spaces.

Quantum vs. classical SVM performance

Comparison of the classification performance of quantum vs. 
classical SVMs (Figure 20) shows two pronounced differences: 
Quantum SVMs provide lower classification accuracy in gene-
ral, and do not show the expected increase in classification accu-
racy with increasing size of the training data slices. We assume 
that both effects are due to the qubit and coupler noise in the 
quantum processing unit (QPU). The transition to larger slice size 
requires the use of increasingly large sections of the QPU, up to 

full capacity. This may drive increased sensitivity to errors, since 
long indirect coupling chains via intermediate qubits are requi-
red to connect all logical qubits. 

This assumption is supported by results we obtained from si-
mulated annealing, i.e. classical simulations of an error-free an-
nealer. While computationally very expensive, these simulations 
provide classification results on par with classical SVMs.

Conclusions

Support Vector Machines (SVMs) lend themselves well to an im-
plementation on limited-size quantum annealers: A QUBO for-
mulation is possible; after training with limited datasets SVMs 
can efficiently classify large numbers of unknown compounds; 
slice-based training can enhance the training quality with limited 
machine size. But the size constraints and remaining error rate 
still limit quantum SVM performance. Further progress in quan-
tum annealer design – increasing the number of qubits and cou-
plers and decreasing noise – will be required to make quantum 
annealers an attractive platform for this approach.
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Figure 21: The typical cooperation process.
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We are in an era where QC technology is reaching a tipping 
point and first algorithms show a quantum advantage. With 
further evolving technology, QC will quickly gain in importan-
ce for companies. However, the disruptive nature of this new 
technology will make it difficult to switch to it without prior 
knowledge. We therefore offer support in building up in-house 
expertise in companies for the use and application of quantum 
computers. At Hamburg’s Fraunhofer institutes your company 
will find a thrilling combination of quantum computing and do-
main expertise, so that we can accompany your business from 
problem definition to solution. 

In this white paper, we have outlined four industrial application 
examples on which the Hamburg-based Fraunhofer Institutes 
have worked on together to advance the field. We are looking 
forward to doing the same for your business use case.

In addition, the Fraunhofer Society as a whole, naturally has a 
broader domain knowledge. Cooperation partners from indus-
try can benefit from the combined expertise of the Fraunhofer 
Institutes. We are happy to establish contacts with experts from 
other institutes that are relevant to the industrial partner.

8  Recommendations 
  and Collaboration Opportunities
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